Warp Drive: la NASA, el Impulsor Alcubierre, la Burbuja Warp, el viaje a mayor velocidad que la Luz




El empuje warpempuje por curvaturaimpulso de deformación o impulso de distorsión es una forma teórica de propulsión superlumínica. Este empuje permitiría propulsar una nave espacial a una velocidad equivalente a varios múltiplos de la velocidad de la luz, mientras se evitan los problemas asociados con la dilatación relativista del tiempo. Este tipo de propulsión se basa en curvar o distorsionar el espacio-tiempo, de tal manera que permita a la nave «acercarse» al punto de destino:




EVE Online con un modelo que sugiere el impulso Warp:

"Superar la velocidad de la luz es un objetivo crítico si la humanidad quiere pensar en una supervivencia a largo plazo, a lo cual se han dado los desarrollos sobre el llamado “Impulsor Alcubierre" o Burbuja Warp.
El impulso warp se basa en el efecto gravitacional para comprimir el espacio-tiempo al frente de un vehículo espacial mientras al mismo tiempo se expande el espacio-tiempo atrás del mismo vehículo. El trozo de espacio-tiempo dentro de la burbuja warp es plano, por lo tanto la nave espacial flota en gravedad cero a lo largo de la onda de espacio-tiempo comprimido y expandido. El efecto neto es similar al que experimenta un surfista al deslizarse sobre una ola, en el cual la persona se encuentra casi estacionaria con respecto a la ola pero en realidad está viajando a la velocidad de esta. Mientras que muchos de los estudios teóricos consideran una burbuja warp que se mueve a 10 veces la velocidad de la luz, el hecho es que no existe un límite conocido para la velocidad potencial.
El físico de la NASA Harold White reveló cómo se vería una nave espacial basada en esa tecnología. Hoy, nos encontramos con una versión revisada."

Enlaces:













En 1994 el físico mexicano Miguel Alcubierre publicó en la revista científica Classical and Quantum Gravity un modelo matemático que supondría posibles los viajes a velocidades mayores que c (velocidad de la luz), es decir, superlumínicos efectuando trucos con el espacio-tiempo, Alcubierre plantea la métrica que lleva su nombre como una solución a algunas ecuaciones de Einstein en el marco de la Teoría General de la Relatividad.
Implícitamente lo postulado por Alcubierre parte de que la materia causa curvaturas o deformaciones (en inglés warps) dentro del "tejido" espaciotemporal.
La métrica de Alcubierre tiene como una de sus conclusiones más llamativas la posibilidad de un viaje a mayor velocidad que la luz al crearse una burbuja de deformación plana dentro de la cual se situaría estacionariamente la cosmonave; detrás de la cosmonave el espaciotiempo sería deformado extendiéndole mientras que por contraparte delante de la cosmonave el espaciotiempo sería contraído o contractado poniendo así el punto de destino mucho más cerca, mientras que "detrás" de la nave el espaciotiempo quedaría expandido "empujado" hacia atrás gran cantidad de años luz, todo esto sin que el espacio y el tiempo dentro de la burbuja de deformación plana en que se hallaría la cosmonave se modificara notoriamente.

En tal caso la nave (para hacer una analogía) "surfearía" sobre una especie de ola espaciotemporal dentro de la "burbuja de deformación plana" que es plana por permanecer estable entre las dos distorsiones (la anterior y la posterior) provocadas en el espaciotiempo (se crearía una distorsión local del espacio-tiempo).
Existirían enormes fuerzas de marea en la región periférica de la supuesta burbuja debidas a las curvaturas provocadas en el espacio-tiempo sin embargo tales fuerzas serían despreciables en el interior de la burbuja dado el carácter plano que allí tendría el espacio-tiempo.
No se violaría ninguna ley física de las previstas por la teoría de la relatividad ya que dentro de la "burbuja de deformación" nada superaría la velocidad de la luz; la nave no se desplazaría dentro de tal burbuja sino que sería llevada por la misma, la nave dentro de la burbuja nunca viajaría más rápido que un haz de luz.

La nave y sus presuntos tripulantes estarían exentos de sufrir los efectos devastadores provocados por las aceleraciones con sus correspondientes enormes fuerzas g, desaceleraciones o los efectos relativistas como la contracción de Lorentz y la dilatación del tiempo a altas velocidades. Alcubierre ha podido demostrar que incluso cuando la nave está acelerando viaja en una caída libre geodésica.
Sin embargo, el que la burbuja de deformación permita viajes supralumínicos se debe a la posibilidad de que el propio espacio-tiempo en el cual viaja la luz tenga la capacidad de superar la velocidad de la luz.
La Teoría de la Relatividad considera imposible que los objetos viajen a más velocidad que la luz en el espacio-tiempo, pero se desconoce a qué velocidad máxima puede moverse el espacio-tiempo; se hipotetiza que en casi en el instante inicial del Big Bang nuestro universo poseía velocidades exponenciales supralumínicas (Véase Universo inflacionario), se supone asimismo que algunos quásares muy lejanos pueden alcanzar velocidades de recesión translumínicas.

Representaciones virtuales de la nave que algún día podría llevarnos a otras galaxias. Harold White sigue trabajando en este proyecto en el Johnson Space Center de la NASA. 



Aquí se introduce otra analogía: existe una velocidad máxima a la cual un objeto puede marchar sobre el suelo ¿pero qué ocurriría si es un suelo móvil —como puede ser una cinta trasportadora— que supera la velocidad de la marcha? Esto supone un cambio en el sistema de coordenadas utilizado como referencia para medir la velocidad. Si el sistema de coordenadas se mueve en la misma dirección del desplazamiento respecto a un segundo sistema de referencia (que debería ser externo al propio espacio-tiempo), el objeto debiera poder incrementar su velocidad indefinidamente respecto del segundo sistema de referencia. Lo que esta analogía plantea es si ¿sería posible "cabalgar sobre un rayo de luz"?
Para crear un dispositivo como la burbuja de deformación que permita el impulso de deformación — explica Alcubierre— se requeriría operar con materia de densidad negativa o materia exótica, creando así con tal materia una burbuja de energía negativa que englobaría a la nave (Véase DiracEnergía negativa). Según Alcubierre la cantidad de energía negativa sería proporcional a la velocidad de propagación de la burbuja de deformación, verificándose que la distribución de la energía negativa estaría concentrada en una región toroidal perpendicular a la dirección en que se movería la burbuja plana.
De este modo, dado que la densidad de energía sería negativa se podría viajar a más velocidad que la luz merced al efecto suscitado por la materia exótica. La existencia de la materia exótica no está descartada: antes bien el efecto Casimir parece confirmar la existencia de tal materia; sin embargo producir bastante materia exótica y conservarla para realizar una proeza como el viaje superlumínico plantea los mismos actualmente irresolubles problemas que para mantener estable a un agujero de gusano.
Por otra parte en la Relatividad General primero se específica una distribución plausible de la materia y de la energía para luego encontrar una geometría del espacio-tiempo asociada; si bien es posible operar con las ecuaciones de Einstein primero especificando una métrica y luego encontrando el tensor de energía e impulso asociado a tal métrica (que es lo realizado por Alcubierre), esta práctica significa que la solución podría violar varias condiciones de energía y requerir la materia exótica.
Robert J. Low, en 1.999 ha probado que dentro del contexto de la relatividad general y aún en ausencia de la materia exótica es posible construir una burbuja de deformación (los textos en francés utilizan como equivalente de burbuja de deformación las palabras «commande de chaîne»/ pedido de cadena). Una teoría coherente de la gravedad cuántica quizás sirva para resolver estas cuestiones.


Forma de la métrica:

La métrica de Alcubierre puede ser escrita :
ds^2 = dx^2 + dy^2 + dz^2 - 2v_s(t)f(r_s(t))\,dx\,dt + \left(v_s(t)^2 f(r_s(t))^2 -1\right)\,dt^2
donde
v_s(t)=\frac{dx_s(t)}{dt}
y
r_s(t)=\sqrt{(x-x_s(t))^2+y^2+z^2}.
Alcubierre eligió una forma específica para la función F pero logra una función de espacio tiempo más simple merced a su propuesta de burbuja de deformación plana.
Y así, utilizando el formalismo 3+1 de la relatividad general, describe al espacio-tiempo mediante una estructuración heterogénea (una foliación) del espacio con hipersuperficies del tiempo cuya coordenada es la constante t.
Así la formalización general de la métrica de Alcubierre es :
ds^2 = -\left(\alpha^2- \beta_i \beta^i\right)\,dt^2+2 \beta_i \,dx^i\, dt+ \gamma_{ij}\,dx^i\,dx^j
Donde \alpha es la función que por defecto aporta el intervalo de tiempo conveniente entre las hipersuperficies vecinas, \beta^i es el vector conector que relaciona los sistemas espaciales coordenados en las diversas hipersuperficies y siendo \gamma_{ij} una métrica positivamente definida en cada una de las hipersuperficies. La forma particular que Alcubierre estudió en 1994 es definida por:
\alpha=1\,
\beta^x=-v_s(t)f\left(r_s(t)\right),
\beta^y = \beta^z =0
\gamma_{ij}=\delta_{ij}
ó
\alpha=1 ;\,
\beta^1=\beta^x=-v_s(t)f\left(r_s(t)\right), \beta^2=\beta^y=0, \beta^3=\beta^z=0 ;\,
\gamma_{ij}=\delta_{ij}= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
De modo que:
v_s(t)=\frac{dx_s(t)}{dt},
r_s(t)=[(x-x_s(t))^2+y^2+z^2]^{\frac{1}{2}}
y
f(r_s)=\frac{\tanh(\sigma (r_s + R))-\tanh(\sigma (r_s - R))}{2 \tanh(\sigma R)}
Con los parámetros R > 0 y \sigma > 0 arbitrarios.

Con esta forma particular de métrica se puede demostrar que la densidad de energía a medir por los observadores cuyas velocidades( 4) son normales y concernientes a las hipersuperficies dado que g es la causa determinante del tensor métrico.
-\frac{c^4}{8 \pi G} \frac{v_s^2 (x^2+y^2)}{4 g^2 r_s ^2} \left(\frac{df}{dr_s}\right)^2
Así la densidad de energía es negativa y se requiere por esto de la materia exótica para provocar las deformaciones del espacio-tiempo.




Impulsores warp podrían ser una realidad de acuerdo a estudios:



Warp Drive: ¿”Realidad o Ficción”? Exposición de todas las posiciones científicas:


La teoría del motor de curvatura ( Warp Drive o motor Warp) y algunos tópicos:




otros datos:












 lo más interesante es que deja abierta la puerta a la aplicación de estos principios a la Aeronáutica, al trazar todos los patrones de la denominada metodología Alcubierre, llegando a simular cómo se producen las burbujas de avance y a determinar el efecto Alcubierre Warp como la forma más eficiente y estable de propulsión hiperluminal.


Impulsor alcubierre burbuja_warp_espacio_tiempo







Conceptos sobre el Espacio-Tiempo:



La curvatura del espacio-tiempo

La aceptación del principio de equivalencia por Albert Einstein le llevó a un descubrimiento ulterior: la contracción o curvatura del tiempo como consecuencia de la presencia de un campo gravitatorio, que quedó expresado en su artículo de 1911 "Sobre la influencia de la gravedad en la propagación de la luz".1
Supongamos que un fotón emitido por una estrella cercana se aproxima a la Tierra. En virtud de la ley de conservación del tetramomentum la energía conservada del fotón permanece invariante. Por otro lado, el principio de equivalencia implica que un observador situado en el fotón (que es un sistema inercial, es decir, se halla en caída libre) no experimenta ninguno de los efectos originados por el campo gravitatorio terrestre. De ello se deduce que la energía conservada del fotón no se altera como consecuencia de la acción de la gravedad, y tampoco lo hace la frecuencia de la luz, ya que, según la conocida fórmula de la física cuántica, la energía de un fotón es igual a su frecuencia v multiplicada por la constante de Planck hE = hν.
En la imagen se reproduce el corrimiento gravitacional hacia el rojo de un fotón que escapa del campo gravitatorio solar y se dirige hacia la Tierra. En este caso, la onda electromagnética pierde progresivamente energía y su frecuencia disminuye conforme aumenta la distancia al Sol.
Ahora bien, si las observaciones las realizara un astrónomo situado en la superficie de la Tierra, esto es, en reposo respecto su campo gravitatorio, los resultados serían muy diferentes: el astrónomo podría comprobar cómo el fotón, por efecto de su caída hacia la Tierra, va absorbiendo progresivamente energía potencial gravitatoria y, como consecuencia de esto último, su frecuencia se corre hacia el azul.2 Los fenómenos de absorción de energía por los fotones en caída libre y corrimiento hacia el azul se expresan matemáticamente mediante las siguientes ecuaciones:

\ E_{obs}=E_{con} e^{-\Phi}
\ h \nu_{rec}=h \nu_{em} e^{-\Phi}
\nu_{rec}=\nu_{em} e^{-\Phi}\,

donde E_{obs}\, es la energía medida por un observador en reposo respecto al campo gravitatorio (en este caso un astrónomo), \ \Phi el potencial gravitatorio de la región donde se encuentra éste, \ E_{con} la energía conservada del fotón, \nu_{em} la frecuencia de emisión, \nu_{rec} es la frecuencia percibida por el observador (y corrida hacia el azul) y \ h la constante de Planck.
Ahora bien, en el párrafo anterior hemos demostrado que la energía conservada del fotón permanece invariante. Por tanto, ¿cómo es posible que exista esta divergencia entre los resultados de la medición de la energía obtenidos por el astrónomo (E_{obs}) y la energía conservada del fotón (E_{con})? La única manera de resolver esta contradicción es considerando que el tiempo se ralentiza como consecuencia de la presencia de un campo gravitatorio. De este modo, la citada ecuación:
\ \nu_{rec}=\nu_{em} e^{-\Phi}
puede escribirse de este modo:
\ \frac{\mbox{ciclos}}{\Delta t_{obs}}= \frac{\mbox{ciclos}}{\Delta t_{em}} e^{-\Phi}
Es decir, la frecuencia es igual al número de ciclos que tienen lugar en un determinado período (generalmente, un segundo). Donde \Delta t_{em} es el tiempo medido por un observador situado a una distancia infinita del cuerpo masivo (y por lo tanto no experimenta la atracción gravitatoria de éste), mientras que \Delta t_{obs} es el tiempo medido por un observador bajo la influencia del campo gravitatorio y en reposo respecto a este (como, por ejemplo, una persona situada sobre la superficie terrestre). De ahí se deduce que cerca de un cuerpo masivo el tiempo se ralentiza, siguiendo estas reglas matemáticas:

\Delta t_{em} = \Delta t_{obs} e^{-\Phi}\,
\Delta t_{obs} = \Delta t_{em} e^{\Phi}\,

En una singularidad espacio-temporal (como las que existen en el interior de los agujeros negros), la densidad de masa-materia y el campo gravitatorio tienden al infinito, lo que provoca la congelación del tiempo y por lo tanto la eliminación de todo tipo de procesos dinámicos:
\lim_{r\to 0} \Delta t_{obs}= \Delta t_{em} e^{-\infty} \to \lim_{r\to 0} \Delta t_{obs}= 0
En la imagen, dos partículas en reposo relativo, en un espacio-tiempo llano.
Se representan en este esquema dos partículas que se acercan entre sí siguiendo un movimiento acelerado. La interpretación newtoniana supone que el espacio-tiempo es llano y que lo que provoca la curvatura de las líneas de universo es la fuerza de interacción gravitatoria entre ambas partículas. Por el contrario, la interpretación einsteiniana supone que las líneas de universo de estas partículas son geodésicas ("rectas"), y que es la propia curvatura del espacio tiempo lo que provoca su aproximación progresiva.
La contracción del tiempo debido a la presencia de un campo gravitatorio fue confirmada experimentalmente en el año 1959 por el experimento Pound-Rebka-Snider, llevado a cabo en la universidad de Harvard. Se colocaron detectores electromagnéticos a una cierta altura y se procedió a emitir radiación desde el suelo. Todas las mediciones que se realizaron confirmaron que los fotones habían experimentado un corrimiento hacia el rojo durante su ascenso a través del campo gravitatorio terrestre.
Hoy en día, el fenómeno de la contracción del tiempo tiene cierta importancia en el marco del servicio localizador GPS, cuyas exigencias de exactitud requieren de una precisión extrema: Basta con que se produzca un retraso de 0.04 microsegundos en la señal para que se produzca un error de posicionamiento de unos 10 metros. De ahí que las ecuaciones de Einstein hayan de ser tenidas en cuenta al calcular la situación exacta de un determinado objeto sobre la superficie terrestre.
Desde un punto de vista teórico, el artículo de Einstein de 1911 tuvo una importancia aún mayor. Pues, la contracción del tiempo conllevaba también, en virtud de los principios de la relatividad especial, la contracción del espacio. De ahí que fuera inevitable a partir de este momento descartar la existencia de un espacio-tiempo llano, y fuera necesario asumir la curvatura de la variedad espacio-temporal como consecuencia de la presencia de masas.
En la relatividad general, fenómenos que la mecánica clásica atribuye a la acción de la fuerza de gravedad, tales como una caída libre, la órbita de un planeta o la trayectoria de una nave espacial, son interpretados como efectos geométricos del movimiento en un espacio-tiempo curvado. De hecho una partícula libre en un campo gravitatorio sigue líneas de curvatura mínima a través de este espacio tiempo-curvado.
Finalmente, podemos hacer referencia a la desviación de los rayos de la luz como consecuencia de la presencia de un cuerpo masivo, fenómeno que da lugar a efectos ópticos como las lentes gravitacionales o los anillos de Einstein.
Frente de onda desviado. Lente gravitacional. Experimento de Eddington:


Teoría de la relatividad:

El presupuesto básico de la teoría de la relatividad es que la localización de los sucesos físicos, tanto en el tiempo como en el espacio, son relativos al estado de movimiento del observador: así, la longitud de un objeto en movimiento o el instante en que algo sucede, a diferencia de lo que sucede en mecánica newtoniana, no son invariantes absolutos, y diferentes observadores en movimiento relativo entre sí diferirán respecto a ellos (las longitudes y los intervalos temporales, en relatividad son relativos y no absolutos).

La teoría de la relatividad incluye tanto a la teoría de la relatividad especial y como a la relatividad general, formuladas por Albert Einstein a principios del siglo XX, que pretendían resolver la incompatibilidad existente entre la mecánica newtoniana y el electromagnetismo:






Teoría de la relatividad especial:


Analogía bidimensional de la distorsión del espacio-tiempo debido a un objeto de gran masa.
La misión Gravity Probe B (GP-B) de la agencia espacial estadounidense (NASA) comprobó dos predicciones de la teoría general de la relatividad del científico Albert Einstein, tras más de 40 años de haberse iniciado el experimento.

La Teoría de la relatividad especial, también llamada Teoría de la relatividad restringida, es una teoría de la física publicada en 1905 por Albert Einstein. Surge de la observación de que la velocidad de la luz en el vacío es igual en todos los sistemas de referencia inerciales y de obtener todas las consecuencias del principio de relatividad de Galileo, según el cual cualquier experimento realizado, en un sistema de referencia inercial, se desarrollará de manera idéntica en cualquier otro sistema inercial.
La Teoría de la relatividad especial estableció nuevas ecuaciones que facilitan pasar de un sistema de referencia inercial a otro. Las ecuaciones correspondientes conducen a fenómenos que chocan con el sentido común, siendo uno de los más asombrosos y más famosos la llamada paradoja de los gemelos.
La relatividad especial tuvo también un impacto en la filosofía, eliminando toda posibilidad de existencia de un tiempo y de un espacio absoluto en el conjunto del universo.



La relatividad especial postula una ecuación para la energía, la cual inexplicablemente llegó a ser la ecuación más famosa del planeta, E=mc2. A esta ecuación también se la conoce como la equivalencia entre masa y energía.
En la relatividad, la energía y el momento de una partícula están relacionados mediante la ecuación:
\ E^{2} - p^{2}c^{2} = m^{2}c^{4}
Esta relación de energía-momento formulada en la relatividad nos permite observar la independencia del observador tanto de la energía como de la cantidad de momento. Para velocidades no relativistas, la energía puede ser aproximada mediante una expansión de una serie de Taylor así
\ E \approx mc^{2} + \frac {1}{2} mv^{2}
encontrando así la energía cinética de la mecánica de Newton. Lo que nos indica que esa mecánica no era más que un caso particular de la actual relatividad. El primer término de esta aproximación es lo que se conoce como la energía en reposo (energía potencial), ésta es la cantidad de energía que puede medir un observador en reposo de acuerdo con lo postulado por Einstein. Esta energía en reposo no causaba conflicto con lo establecido anteriormente por Newton, porque ésta es constante y además persiste la energía en movimiento. Einstein lo describió de esta manera:
Bajo esta teoría, la masa ya no es una magnitud inalterable pero sí una magnitud dependiente de (y asimismo, idéntica con) la cantidad de energía.6
Albert Einstein

Fuerza

En mecánica newtoniana la fuerza no relativista puede obtenerse simplemente como la derivada temporal del momento lineal:
\mathbf{F} = \frac {d\mathbf{p}}{dt},
Pero contrariamente postula la mecánica newtoniana, aquí el momento no es simplemente la masa en reposo por la velocidad. Por lo que la ecuación \mathbf{F} = m\mathbf{a} ya no es válida en relatividad. Si introducimos la definición correcta del momento lineal, usando la masa aparente relativista entonces obtenemos la expresión relativista correcta:
\mathbf{F} = \frac {d(M\mathbf{v})}{dt} = \frac {dM}{dt}\mathbf{v} + M\frac {d\mathbf{v}}{dt} = m\frac {d\gamma}{dt}\mathbf{v} + \gamma m\frac {d\mathbf{v}}{dt}
donde \ M es la masa relativista aparente. Calculando la fuerza anterior se observa el hecho que la fuerza podría no tener necesariamente la dirección de la aceleración, como se deduce desarrollando la ecuación anterior:
\mathbf{F} = \gamma m \mathbf{a} + \gamma^3 m\frac{\mathbf{v}\cdot\mathbf{a}}{c^2} \mathbf{v}
\mathbf{F} = \gamma^3 m a_t \mathbf{\hat{e}_t} + \gamma m a_n \mathbf{\hat{e}_n}\quad \Rightarrow \quad \begin{bmatrix} F_t\\ F_n \end{bmatrix} = m \begin{bmatrix} \gamma^3 & 0\\ 0 & \gamma \end{bmatrix} \begin{bmatrix} a_t\\ a_n \end{bmatrix}
Existen dos casos particulares de movimiento de una partícula donde la fuerza es siempre paralela a la aceleración, que son el movimiento rectilíneo uniformemente acelerado y el movimiento circular uniforme; en el primer caso el factor de proporcionalidad es \gamma^3 m\,y el en segundo \gamma m\,





Agujeros de gusano:

En física, un agujero de gusano, también conocido como puente de Einstein-Rosen y en algunas traducciones españolas «agujero de lombriz», es una hipotética característica topológica de unespacio-tiempo, descrita por las ecuaciones de la relatividad general, consistente esencialmente en un «atajo» a través del espacio y el tiempo. Un agujero de gusano tiene por lo menos dos extremos, conectados a una única «garganta», pudiendo la materia 'desplazarse' de un extremo a otro pasando a través de ésta:

Métrica de los agujeros de gusano

Las teorías sobre la métrica de los agujeros de gusano describen la geometría del espacio-tiempo de un agujero de gusano y sirven de modelos teóricos para el viaje en el tiempo. Un ejemplo simple de la métrica de un agujero de gusano atravesado podría ser el siguiente:
ds^2= - c^2 dt^2 + dl^2 + (k^2 + l^2)(d \theta^2 + \sin^2 \theta \, d\phi^2)
Un tipo de métrica de agujero de gusano no atravesado es la solución de Schwarzschild:
ds^2= - \left(1 - \frac{2GM}{c^2r}\right)dt^2 + \frac{dr^2}{1 - \cfrac{2GM}{c^2r}} + r^2(d \theta^2 + \sin^2 \theta \, d\phi^2)

Agujeros de gusano y viajes en el tiempo:

Un agujero de gusano podría permitir en teoría el viaje en el tiempo. Esto podría llevarse a cabo acelerando el extremo final de un agujero de gusano a una velocidad relativamente alta respecto de su otro extremo. La dilatación de tiempo relativista resultaría en una boca del agujero de gusano acelerada envejeciendo más lentamente que la boca estacionaria, visto por un observador externo, de forma parecida a lo que se observa en la paradoja de los gemelos. Sin embargo, el tiempo pasa diferente a través del agujero de gusano respecto del exterior, por lo que, los relojes sincronizados en cada boca permanecerán sincronizados para alguien viajando a través del agujero de gusano, sin importar cuanto se muevan las bocas. Esto quiere decir que cualquier cosa que entre por la boca acelerada del agujero de gusano podría salir por la boca estacionaria en un punto temporal anterior al de su entrada si la dilatación de tiempo ha sido suficiente.:



Métrica de Alcubierre para superar la Velocidad de la Luz:

El sistema supuesto por Alcubierre para los viajes cósmicos es denominado en inglés "Warp Drive" (el mismo nombre dado en la serie Star Trek — o "Viaje a las estrellas"—), la traducción es: Impulso por deformación o Impulso de Deformación o Distorsión Impulsada, también se encuentran las siguientes traducciones: Impulso de torsión, Impulso Warp, Viaje curvado, Viaje combado, Motor de curvatura e incluso Motor de Impulso Factorial. Todas estas denominaciones dan la noción del principio básico de este hipotético método de viaje "superluminal": en lugar de acelerar un objeto (supongase la cosmonave) a velocidad c o próxima a c se combaría o curvaría el "tejido" del espacio-tiempo de modo que los objetos a donde se viaja se acerquen sin un movimiento de la nave en el sentido usual del término movimiento: más que moverse la nave -en estas hipótesis-, es movido (curvado, "warpeado") el espaciotiempo:




The Time Machine de Edward Myers

El Universo: Viajar en el tiempo

«Nada es demasiado maravilloso para ser verdad, si es consistente con las Leyes de la Naturaleza».
(Michael Faraday). 




compartiendo conocimiento.
PulzarStudios

Comentarios

  1. yo ya lo hice y sera posible la fractura espacio tiempo.. nos quedan pocos años de vida en la tierra y el único que lo sabe es el papa.. unos pocos podrán salvarse gracias a esto no a nada biblico

    ResponderEliminar

Publicar un comentario

Entradas populares